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Abstract
Ordinary, modified and mixed Korteweg–de Vries–Zakharov–Kuznetsov (KdV–
ZK) equations governing the oblique propagation of electrostatic modes in
magnetized plasmas have been (re)derived in a fully systematic way for gen-
eral mixtures of hot isothermal, warm adiabatic fluid and cold immobile back-
ground species. The ordinary KdV–ZK equation is the standard paradigm, but
for more complicated plasma compositions the soliton character can switch
from compressive to rarefactive or vice versa, at critical densities and temper-
atures. For these special values the modified KdV–ZK equation is to be used,
whereas near such critical values a mixed KdV–ZK equation can model dou-
ble layers. Since the description is given in physical rather than normalized
variables for genuine multispecies plasmas, widely different frequency regimes
and plasma models can be treated and the general features compared. Applica-
tions include electron- and ion-acoustic modes in normal plasmas with one or
two hot Boltzmann electron species, or ion- and dust-acoustic modes in dusty
plasmas, depending on how the heavier components are modelled. Special em-
phasis is given to a discussion of critical regimes for the better known plasma
electrostatic modes, leading to new results and better physical insight.

PACS numbers: 52.27.Lw, 95.30.Qd, 98.38.Cp, 52.25.Ya, 02.30.Jr

1. Introduction

Korteweg–de Vries–Zakharov–Kuznetsov (KdV–ZK) equations have been derived for quite a
number of different electrostatic plasma modes that propagate obliquely to a static magnetic
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field B0. The simplest model is that of ion-acoustic solitons, where the hot isothermal electrons
are described by a Boltzmann distribution, while the cooler ions are treated as a fluid with
adiabatic pressures. To cite a few applications in plasma physics of KdV-like equations,
derivations leading to the KdV equation itself have been given for parallel electrostatic
(Washimi and Taniuti 1966), oblique electromagnetic (Kakutani et al 1968) and perpendicular
magnetosonic modes (Kakutani and Ono 1969).

Many variations on this basic theme crop up in the literature, which is so vast that we can
only cite a few, immediately relevant papers. One is where different positive and negative ions
are present, so that a large enough concentration of negative ions can alter the character of the
solitons from compressive to rarefactive (Das and Tagare 1975). To avoid ambiguities, we shall
use the words compressive and rarefactive to refer to the behaviour of the electrostatic potential
rather than to densities of particular species. The transition occurs at critical densities, for which
the KdV–ZK equation is no longer the appropriate nonlinear paradigm, but one finds instead
the modified KdV–ZK (mKdV–ZK) equation, with cubic rather than quadratic nonlinearities.
Close to critical densities, mixed KdV–mKdV equations with both quadratic and cubic
nonlinearities can occur, and describe solitons or weak double layers in plasmas (Raadu 1989).

Another possibility is to consider two distinct electron species, one hot and isothermal,
the other cooler and adiabatic, which together with magnetized or unmagnetized ions leads
to electron-acoustic solitons (Mace and Hellberg 2001). More recently, attention has turned
to dusty plasmas, where one or more charged dust components have introduced space and
timescales that differ vastly from those associated with the usual ions and electrons (Mendis
and Rosenberg 1994, Bliokh et al 1995, Horányi 1996, Verheest 1996, Verheest 2000, Shukla
2001). Here the prime example is the dust-acoustic mode, well studied both in theory (Rao
et al 1990) and in the laboratory (Barkan et al 1995).

Earlier treatments are too often restricted to specific models and use corresponding
normalizations that make comparisons between analogous expressions for the different
coefficients difficult. It is thus of interest to revisit the whole field of electrostatic modes
in magnetized plasmas in a general treatment that encompasses all the known dispersion laws
and nonlinear equations. For this, we shall distinguish three classes of species, each initially
including an unspecified number of constituents. The cooler adiabatic species are described
by standard fluid equations, including that governing the pressure variations. Besides these,
we shall allow for two extremes: on the hot side, several Boltzmann species can be considered,
corresponding effectively to the massless limit where inertial effects vanish because the thermal
velocities exceed typical wave and translational speeds. On the sluggish side, several immobile
background species are included, to simulate the case of unmagnetized ions when describing
electron-acoustic solitons (Mace and Hellberg 2001), or of unmagnetized dust when dealing
with ion-acoustic solitons in dusty plasmas. The latter are also called dust-ion-acoustic modes.

The paper is structured as follows. In section 2 we recall some elements of the basic
formalism, and derive then in section 3 the generic nonlinear modes, governed by a KdV–ZK
equation. For critical densities the nonlinear modes obey a mKdV–ZK equation, given in
section 4. Although we include possible beam velocities in the general derivations, we shall
leave a discussion of beam instabilities for a companion paper. Several specific applications
then follow in section 5, including electron-acoustic, ion-acoustic and dust-acoustic solitons.
Critical and supercritical densities are discussed where relevant. Finally, our conclusions are
summarized in section 6.
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2. Basic formalism

As pointed out in the introduction, the basic model includes three classes of species. The
cooler adiabatic species, with running subscript α, are described by standard fluid equations.
These are the continuity equations,

∂nα

∂t
+ ∇ · (nαuα) = 0 (1)

the equations of motion,
∂uα

∂t
+ uα · ∇uα +

1

nαmα
∇pα = − qα

mα
∇ϕ +�αuα × ex (2)

and the adiabatic pressure equations,
∂pα

∂t
+ uα · ∇pα + γαpα∇ · uα = 0. (3)

Here nα , uα and pα refer to the densities, fluid velocities and pressures, respectively, of
the different species. The latter have charges qα , masses mα , adiabatic indices γα and
gyrofrequencies �α = qαB0/mα that include the sign of the charge. The direction of the
static magnetic field B0 has been taken as the x axis of the reference frame. In this study
of electrostatic modes ϕ denotes the electrostatic potential, and wave magnetic fields will be
omitted.

In addition to the fluid species, there are a number of hot isothermal Boltzmann species,
denoted by a running subscript β, with densities

nβ = Nβ exp

[
−qβϕ
κTβ

]
. (4)

Here Tβ refers to the isothermal temperatures. For all species equilibrium quantities will be
denoted by capital letters, such as Nβ for the equilibrium densities of the Boltzmann species
or Uα for the parallel equilibrium streaming of the adiabatic species, in order to avoid dealing
with too many subscripts later on when expanding to different orders.

On the sluggish side, several immobile background species, with running subscript δ, have
constant densitiesNδ , and these are included to allow for (charge) density imbalances between
the species responding to the waves.

Finally, the set of equations is closed by Poisson’s equation

ε0∇2ϕ +
∑
α

nαqα +
∑
β

Nβqβ exp

[
−qβϕ
κTβ

]
+

∑
δ

Nδqδ = 0. (5)

Before addressing the nonlinear evolution, we briefly discuss the dispersion law for linear
modes described by the set (1)–(5). This dispersion law is found to be∑

α

ω2
pα

k2ω̂2
α − k2

‖�
2
α

ω̂4
α − ω̂2

α(k
2v2
T α +�2

α) + k2
‖v

2
T α�

2
α

= k2 +
∑
β

1

λ2
Dβ

. (6)

Plasma frequencies ωpα are defined through ω2
pα = Nαq

2
α/ε0mα , Debye lengths λDβ for the

isothermal species through λ2
Dβ = ε0κTβ/Nβq

2
β and Doppler-shifted wave frequencies as

ω̂α = ω− k‖Uα , with k‖ the wavenumber parallel to the direction of the static magnetic field.
Thermal velocities vT α for the adiabatic species will be defined through v2

T α = γαPα/Nαmα ,
with the inclusion of the adiabatic index γα . This explicit departure from the conventional
definition is purely intended to lighten the notation. At parallel propagation, (6) reduces to∑

α

ω2
pα

ω̂2
α − k2v2

T α

= 1 +
∑
β

1

k2λ2
Dβ

. (7)
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For small wavenumbers both dispersion laws (6) and (7) can be approximated to the
lowest order as an acoustic-like dispersion-free propagation along the field, with a dispersive
correction of order k3, i.e.

ω = k‖V − k3
‖a − k‖k2

⊥d + · · · . (8)

The phase velocity V in the limit of vanishing wavenumbers is determined from

D ≡
∑
α

ω2
pα

(V − Uα)2 − v2
T α

−
∑
β

1

λ2
Dβ

= 0 (9)

and the coefficients a and d are given by

a = 1

A
d = D

A
(10)

with

A = 2
∑
α

ω2
pα(V − Uα)

[(V − Uα)2 − v2
T α]2

(11)

D = 1 +
∑
α

ω2
pα(V − Uα)

4

�2
α[(V − Uα)2 − v2

T α]2
. (12)

As we shall see afterwards, a and d will turn out to be the coefficients of the dispersive terms in
the KdV–ZK equation (19) and the mKdV–ZK equation (24). A physically more transparent
discussion of (8) will be given in the subsection dealing with the application of our general
formalism to electron-acoustic waves.

The immobile species play no direct role in the dispersion laws (6) and (9), but have an
indirect effect through the Poisson equation on nα and on Nβ , and hence on ωpα and on λDβ .
This is not surprising as it is understandable that an immobile species would play no direct
role in wave motion.

3. Generic nonlinear modes: KdV–ZK equation

Inspired by the properties of the linear dispersion law for small wavenumbers k, we adopt the
standard KdV stretching of the independent variables,

ξ = ε1/2(x − V t)

η = ε1/2y

ζ = ε1/2z

τ = ε3/2t.

(13)

Here V is the velocity of the nonlinear structure in a co-moving frame, when nonlinearities
and dispersion are omitted. Thus, V basically corresponds to the linear phase velocity in the
limit k → 0, and will later be shown in a natural way to obey (9).

To be fully systematic and allow for the derivations of both the KdV–ZK and mKdV–ZK
equations in a coherent way, we adopt a general expansion for all dependent variables in powers
of ε1/2, of the form

f = F + ε1/2f1 + εf2 + ε3/2f3 + ε2f4 + · · · . (14)

Only the densities, pressures and parallel components of the fluid velocities will have nonzero
equilibrium values, denoted respectively byNα , Pα andUα . The latter then give the possibility
of including parallel beam effects and instabilities. The perpendicular components of the fluid
velocities and the electrostatic potential are assumed to vanish in equilibrium.
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Inserting the stretching (13) and the expansions (14) into the basic equations (1)–(5) gives
a series of equations, upon separating out the different orders in ε1/2. When possible, these
equations will be integrated with one-sided boundary conditions suitable for the type of solitary
wave structure we are interested in,

f → F and fi → 0
∂fi

∂ξ
→ 0 (i = 1, 2, . . .) (15)

when ξ → ∞. This procedure is standard and the intermediate steps are well documented in the
literature for some of the simpler cases (Das and Verheest 1989, Das et al 1992, Murawski and
Edwin 1992, Mishra et al 1994, Verheest and Hellberg 1999, Das et al 2000, Mamun et al 2000),
so that there is no need to spell out the intervening results, since our computations are analogous
and straightforward. We shall only highlight what is obtained from the Poisson equation (5)
at various orders in ε1/2. To order ε0 we have overall charge neutrality in equilibrium,∑

α

Nαqα +
∑
β

Nβqβ +
∑
δ

Nδqδ = 0 (16)

whereas to order ε1/2 the dispersion law (9) determining V is recovered. Contrary to what is
customarily done in the literature, we have deliberately not used non-dimensional or normalized
variables, because one of the aims of our paper is to look at widely varying plasma compositions
and wave domains, for which common normalizations are neither possible nor meaningful.

Next, to order ε, a natural bifurcation point is reached, namely

Dϕ2 + Bϕ2
1 = 0. (17)

The terms in ϕ2 drop out, on account of the linear dispersion law (9), and B is given by

B =
∑
α

ω2
pαqα[3(V − Uα)

2 + v2
T α]

mα[(V − Uα)2 − v2
T α]3

+
∑
β

qβ

λ2
DβκTβ

. (18)

It will be shown that this is essentially the coefficient of the quadratic nonlinearity in a KdV–ZK
equation.

Although for electron–proton plasmas B is strictly positive, for certain more complicated
plasma compositions the parameters are such that B can become negative (Das and Tagare
1975, Verheest 1988) and there exist critical densities obeying B = 0. Because Bϕ2

1 = 0,
the bifurcation means that either the plasma composition is very special, so that B = 0,
to be discussed further on, or ϕ1 = 0 and all variables with subscript 1 vanish from the
expansions (14).

We proceed with the generic case where B �= 0, and hence ϕ1 = 0, indicating that there
are no terms of order ε1/2 in the expansions (14) of the dependent variables. This is the normal
KdV expansion, except that the lowest-order variables now carry a subscript 2 (instead of 1 as
usual in the literature) because of our treatment of the KdV–ZK and mKdV–ZK equations in
one coherent derivation.

It turns out that to order ε3/2 Poisson’s equation (5) merely duplicates for ϕ3 what we
learned to order ε for ϕ2. On the other hand, new information is obtained to order ε2, and
this gives the KdV–ZK equation (Zakharov and Kuznetsov 1974, Laedke and Spatschek 1982,
Infeld 1985, Das and Verheest 1989, Infeld and Frycz 1991, Edwin and Murawski 1995,
Mamun 1998, Infeld and Rowlands 2000)

∂ϕ2

∂τ
+ a
∂3ϕ2

∂ξ 3
+ bϕ2

∂ϕ2

∂ξ
+ d

∂

∂ξ

(
∂2ϕ2

∂η2
+
∂2ϕ2

∂ζ 2

)
= 0 (19)

where the new coefficient b is given by

b = B

A
(20)
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and a and d have already been defined in (10) when discussing cubic corrections to the lowest-
order linear dispersion law. The expression for parallel propagation is recovered by omitting
all η and ζ dependences, giving instead of (19) a standard KdV equation, formally obtained as
if d = 0. Similar remarks will be made in the next section when encountering the mKdV–ZK
equation (24), which reduces for parallel propagation to the corresponding mKdV equation.

It is clear that the slow time variations are caused only by the adiabatic fluid constituents
of the plasma, through A, whereas the oblique effects, throughD, contain a part which comes
from the Laplacian and another that is related to the fluid species. The hot Boltzmann species
only enter through B, the coefficient of the nonlinear term.

In principle A and B can change sign, whereas D is strictly positive. When one looks at
the structure of the coefficients (10) and (20) in (19), it is clear that A comes from the slow
time derivative, and the sign ofA could, in principle, be absorbed by a time reversal, giving no
new physical insight. The sign of A depends on the sign of the various quantities V −Uα , and
for a stationary plasma A is always positive. SinceD is strictly positive, it is the possible sign
change of B that leads to physically different situations. Indeed, if critical densities can be
exceeded so thatB is negative, the solitons will be rarefactive. The transition from compressive
to rarefactive, of course, occurs at B = 0, except that in the immediate vicinity thereof the
expansions break down and have to be reconsidered.

The standard one-soliton solution (Ablowitz and Clarkson 1991, Infeld and Rowlands
2000) of (19) propagating at an angle ϑ to the static magnetic field is given by

ϕ2 = 3M

b cosϑ
sech2

[
1

2
µ0

]
(21)

where M is the soliton velocity, µ a measure of the inverse width given through

µ2 = M

(a cos2 ϑ + d sin2 ϑ) cosϑ
(22)

0 the running phase argument,

0 = ξ cosϑ + η sin ϑ cosψ + ζ sin ϑ sinψ −Mt (23)

and ψ the second angle in spherical coordinates.

4. Nonlinear modes at critical densities: mKdV–ZK equation

Now we return to the bifurcation point encountered in the previous section and assume that the
plasma is at critical densities, defined here by putting B = 0. This condition will be discussed
in more detail in the next sections for different plasma compositions. Now B = 0 implies that
we can continue to work with ϕ1. The mKdV–ZK equation then follows from (5) to order ε3/2,
namely

∂ϕ1

∂τ
+ a
∂3ϕ1

∂ξ 3
+ cϕ2

1
∂ϕ1

∂ξ
+ d

∂

∂ξ

(
∂2ϕ1

∂η2
+
∂2ϕ1

∂ζ 2

)
= 0. (24)

The coefficients a and d are unchanged from their expressions (10) for the KdV–ZK
equation (19), whereas the coefficient of the new, cubic term is given by

c = C

A
(25)

with

C = 3

2

∑
α

ω2
pαq

2
α[5(V − Uα)

4 + 10(V − Uα)
2v2
T α + v4

T α]

m2
α[(V − Uα)2 − v2

T α]5
− 1

2

∑
β

q2
β

λ2
Dβκ

2T 2
β

. (26)
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We note that the coefficient of the cubic nonlinearity C depends on both the adiabatic and the
inertialess components, as was the case for B, the coefficient of the quadratic nonlinearity in
the usual KdV–ZK equation (19). A change of sign of C (and hence the transition through
C = 0) might be possible, depending on the relative balance between the contributions of the
Boltzmann and the fluid species.

The one-soliton solution (Ablowitz and Clarkson 1991, Infeld and Rowlands 2000) of (24)
propagating at an angle ϑ to the static magnetic field is given by

ϕ1 = ±
√

6M

c cosϑ
sech µ0 (27)

and the parameters have been defined in (22) and (23).
In the vicinity of critical densities double layers become possible. For these to occur, one

would need that Bφ2
1 become small, of the order of Cφ3

1 , so that both quadratic and cubic
nonlinearities can together be present in one evolution equation, the mixed KdV–ZK equation,

∂ϕ1

∂τ
+ a
∂3ϕ1

∂ξ 3
+ bϕ1

∂ϕ1

∂ξ
+ cϕ2

1
∂ϕ1

∂ξ
+ d

∂

∂ξ

(
∂2ϕ1

∂η2
+
∂2ϕ1

∂ζ 2

)
= 0. (28)

This has general travelling solitary wave solutions of the form

ϕ1 = 6M

b cosϑ

1

1 ±
√

1 + 6Mc
b2 cosϑ coshµ0

(29)

with µ and 0 defined as before.
Weak double layers are possible if 6Mc + b2 cosϑ = 0, and are of the form

ϕ1 = ± 3M

b cosϑ

(
1 − tanh

1

2
µ0

)
. (30)

However, the existence of weak double layers involves some tricky discussions about the
validity of the expansions assumed in the singular perturbation scheme (Hellberg et al 1992)
and will not be pursued here.

5. Applications

Among the many possible applications, we just highlight some relevant results and new insights.

5.1. Weakly nonlinear electron-acoustic waves

Electron-acoustic waves occur in plasmas having two electron components distinguished by
their disparate temperatures. The simplest possible plasma model that supports the electron-
acoustic wave is therefore a stationary plasma (Uα = 0) which has protons, cool electrons with
temperature Tc and density Nc and hot electrons with temperature Th and density Nh. Within
the context of the model outlined in section 2, this means that the cool electrons are fluid-like,
obeying the fluid equations (1)–(3) (they are an α-component), the hot electrons, owing to their
much greater mobility, may be treated as inertialess and hence obey Boltzmann’s relation (they
are a β-component) and the ions, which are stationary on electron-acoustic timescales, are a
charge-neutralizing δ-component. We shall denote cool-electron parameters with subscript c,
hot-electron parameters with subscript h and ions with subscript i.

With the above plasma model equation (9) gives the following for V 2:

V 2 = v2
ea + v2

T c (31)
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where the electron-acoustic speed is defined by vea = ωpcλDh = (Nc/Nh)
1/2(κTh/me)

1/2, and
v2
T c = γcκTc/me.

The KdV–ZK coefficients (10) and (20) are

a = 1

2

v2
eaλ

2
Dh

(v2
ea + v2

T c)
1/2

(32)

b = − 1

2

e

v2
ea(v

2
ea + v2

T c)
1/2

[
3v2

ea + 4v2
T c

me
+
v4

ea

κTh

]
(33)

d = 1

2

v2
eaλ

2
Dh

(v2
ea + v2

T c)
1/2

+
1

2
ρ2

se(v
2
ea + v2

T c)
1/2 (34)

where ρse ≡ (v2
ea + v2

T c)
1/2/�e is the Larmor radius of an electron travelling at the linear

parallel phase (or group) speed. The coefficients (32)–(34) are equivalent to those derived in
Mace and Hellberg (2001), here made physically transparent through lack of normalization.

The coefficients a and d , with vT c = 0, are readily identified from the linear dispersion
relation in the small-wavenumber limit (see, e.g., Mace and Hellberg (1993a) and our discussion
of (8) in its more general form)

ω − k‖vea = − 1
2k

3
‖λ

2
Dhvea − 1

2k‖k
2
⊥(ρ

2
se + λ2

Dh)vea. (35)

To see this note that ik‖ → ∂/∂ξ and −k2
⊥ → ∂2/∂η2 +∂2/∂ζ 2. Then, as one would expect, the

coefficient a controls dispersion (in a frame of reference propagating at the group velocity vea)
along the field direction and d , which contains finite-Larmor-radius effects, controls dispersion
perpendicular to it.

The nonlinear term, whose coefficient is b, produces the coupling between Fourier
components with different wavenumbers, i.e. wave–wave interaction. In the simple stationary
model it is always negative and as a result only negative potential solitary waves are permitted.
Of course, its negative definiteness rules out higher-order nonlinear evolutionary equations
for electron-acoustic waves, unless a beam is included in the model (Berthomier et al 2000,
Mace and Hellberg 2001). Mace and Hellberg (1993b) have shown furthermore that even if
one relaxes the criterion that the nonlinear coefficient vanish, and requires it merely to be of
order ε, one cannot derive a modified KdV equation without violating convergence criteria.

Some mention should be made of the choice of the parameter γc, the ratio of specific
heats for the cool-electron fluid. For planar one-dimensional solitons or wavepackets a value
of γc = 3 would be appropriate, but for multi-dimensional solitons the value of γc should be
chosen to be two in the case of cylindrical solitons or 5/3 for spherical solitons. The latter
choice of γc = 5/3 would be an improvement on the value of three used in the model for
ellipsoidal solitons described by Mace and Hellberg (2001).

5.2. Ion-acoustic solitons in two-electron-temperature plasmas

Critical densities can occur when there are two Boltzmann species of the same sign, or when
two fluid species have different signs. Indeed, for ion-acoustic solitons in a plasma with
two Boltzmann electron species (one hotter species, with subscript h, and one cooler species,
with subscript c) and singly charged fluid ions, we find, again in the absence of equilibrium
streaming, that the dispersion law (9) gives

V 2 = ω2
piλ

2
D + v2

T i = v2
ia + v2

T i (36)

where via = ωpiλD is the ion-acoustic velocity in the two-temperature plasma. Here λD is a
global Debye length, given through λ−2

D = λ−2
Dh + λ−2

Dc , and needed whenever more than one
Boltzmann species is considered (Verheest and Hellberg 1997). In this plasma we have that
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B = ε0

Nie

[
4v2
T i

v2
iaλ

4
D

+
2

λ4
D

− 1

NhNc

(
Nh

λ2
Dc

− Nc

λ2
Dh

)2
]
. (37)

This can become zero in the regime where Tc � Th and Nc � Nh, so Nc/Nh ∼ T 2
c /T

2
h .

Analogous results were discussed in the framework of arbitrary-amplitude theory at parallel
propagation (Baboolal et al 1989, Baboolal et al 1990, where many references to earlier work
can be found).

Even supercritical densities are possible in this model, in the sense that bothB andC vanish
at the same time, when the plasma parameters also obey Ni = Nh + Nc and the appropriate
dispersion law. For simplicity we shall investigate this in the cold-ion limit, because this
only amounts to small corrections, without invalidating the gist of the computations. Using
equilibrium charge neutrality allows us to rewrite (9), (18) and (26) together as(

1 − miV
2

κTh

)
Nh =

(
miV

2

κTc
− 1

)
Nc(

3 − m2
i V

4

κ2T 2
h

)
Nh =

(
m2

i V
4

κ2T 2
c

− 3

)
Nc(

15 − m3
i V

6

κ3T 3
h

)
Nh =

(
m3

i V
6

κ3T 3
c

− 15

)
Nc.

(38)

This leads to the following special relations between the temperatures and densities of the
Boltzmann electron species:

Nc

Nh
= Tc

Th
= 5 − 2

√
6 � 0.1 (39)

with the phase velocity V given by

V 2 = (3 −
√

6)
κTh

mi
� 0.55

κTh

mi
. (40)

We are admittedly dealing here with a very special case, and would need a complete revision
of the expansion scheme, leading to a KdV–ZK equation with quartic nonlinearities. Because
the physical insight is limited, we shall not pursue this further, but have only indicated this
here because supercritical densities are rarely mentioned correctly in the literature, if at all
(Verheest and Hellberg 1999).

5.3. Ion-acoustic solitons in dusty plasmas

In this section we investigate the influence of charged dust on the ion-acoustic mode. The
model adopted, as in uncontaminated plasmas, is that of Boltzmann electrons and fluid ions,
but where part of the electron charge has been absorbed by the background dust, considered
immobile on the ion-acoustic timescales. In this three-species model there is no equilibrium
streaming, and it follows from (9) that the phase velocity V of these modes obeys

V 2 = ω2
piλ

2
De + v2

T i = Ni

Ne
v2

ia + v2
T i (41)

where v2
ia = κTe/mi refers to the normal ion-acoustic velocity in uncontaminated plasmas, and

we remind ourselves of the fact that v2
T i contains a factor γi. Ion-acoustic solitons in plasmas

without charged dust are always compressive in the electron density, following from (19)
because then B > 0. We can now ask whether owing to the presence of charged dust, the
solitons might also become rarefactive in a given parameter range, in other words, whether B
can change sign and become negative.
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We thus write the critical density condition B = 0, namely

ω2
pi(3V

2 + v2
T i)

mi(V 2 − v2
T i)

3
= 1

λ2
DeκTe

(42)

as (
Ni

Ne

)2

− 3
Ni

Ne
− 4

v2
T i

v2
ia

= 0 (43)

the positive root of which is approximately given by

Ni

Ne
� 3 +

4v2
T i

3v2
ia

. (44)

This is only slightly larger than three because vT i � via, and hence critical densities occur
when Ni � 3Ne. The conclusion is that at sufficiently high levels of electron depletion onto
the charged dust grains, about two-thirds of the electrons, the solitons become rarefactive
(B < 0). At or around critical densities (B � 0) the KdV–ZK equation is no longer the
appropriate paradigm, but the mKdV–ZK equation (24) or mixed KdV–ZK equation (28) has
to be used.

5.4. Dust-acoustic solitons

For dust-acoustic solitons the dust motion has to be taken into account, and the standard
composition will be taken, that of Boltzmann electrons and ions besides the charged dust. The
dispersion law (9) becomes

V 2 = ω2
pdλ

2
D + v2

T d = v2
da + v2

T d (45)

where the dust-acoustic velocity vda = ωpdλD has been introduced, and λD is now determined
by λ−2

D = λ−2
De + λ−2

Di . The expression for B thus becomes

B = qd(3v2
da + 4v2

T d)

mdv
4
daλ

2
D

+
e

λ2
DiκTi

− e

λ2
DeκTe

(46)

which can be rewritten as

B = ε0

Ndqd

[
4v2
T d

v2
daλ

4
D

+
2

λ4
D

+
1

NeNi

(
Ne

λ2
Di

+
Ni

λ2
De

)2
]
. (47)

This is always nonzero and has the sign of qd, so there are no critical densities. The solitons are
compressive or rarefactive, depending on whether the dust is positively or negatively charged,
respectively. Similar conclusions are valid for the ordinary KdV equations, when one studies
electrostatic waves in unmagnetized dusty plasmas, because the expression for B does not
change.

6. Conclusions

To summarize, we have considered the three-dimensional propagation of electrostatic modes
oblique to a static magnetic field and used the reductive perturbation approach to derive a
generalized KdV–ZK and mKdV–ZK equation governing the nonlinear propagation of these
modes. Unlike previous studies that are often restricted to specific physical models and
their corresponding normalizations, we have consciously presented unnormalized governing
equations that provide deeper physical insight into the inherent nonlinear behaviour dictated
by critical densities, temperatures etc, when applied to specific physical models. We obtained
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a natural bifurcation point, where by assuming that the coefficient of quadratic nonlinearity,
B, is non-zero, we obtain the KdV–ZK equation and then the mKdV–ZK equation for when
B goes to zero (a condition that is achievable for special plasma compositions), which has
inherent cubic nonlinearity. It is apparent from the unnormalized general equations that slow
time variations are solely due to the adiabatic fluid constituents of the plasma, whilst oblique
effects includes terms entering both through the Laplacian and the fluid species. On the other
hand, the hot Boltzmann species affect just the coefficient of the nonlinear term. Further,
double layers become possible in the vicinity of critical densities and when both quadratic
and cubic nonlinearities are of the same order, such that both terms can be retained, yielding
an nonlinear evolution equation with both quadratic and cubic nonlinearities viz the mixed
KdV–ZK equation.

For completeness, our generalized nonlinear equations are then applied to specific plasma
models. In the case of weakly nonlinear electron-acoustic waves comprising both hot- and cold-
electron species and stationary ions we confirm the results of Mace and Hellberg (2001). When
applied to ion-acoustic solitons comprising two Boltzmann species of electrons (characterized
by different temperatures) and singly charged fluid ions conditions of critical densities and
temperatures are obtained, where analogous results have been derived in the literature strictly
for the case of parallel propagation. Further, we show that even supercritical densities (where
both the coefficients and quadratic and cubic nonlinearities vanish) are possible in this specific
model. However, this being a very special case, it may well be necessary to re-visit the
expansion scheme, thus leading to quartic nonlinearities. We next apply our general equations
to ion-acoustic solitons in a dusty plasma comprising Boltzmann electrons, fluid ions and
stationary background charged dust grains, and obtain critical density conditions. Finally we
turn our attention to dust-acoustic solitons comprising Boltzmann electrons and ions and fluid
charged dust grains. In the case of both KdV–ZK and ordinary KdV solitons we show that the
nature of the soliton is determined solely by the sign of the dust charge, with compressive and
rarefactive solitons corresponding to positive and negative dust charge, respectively.
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